A short description of the post.
Download \(C0_2\) emissions per capita from Our World in Data into the directory for this post.
Assign the location of the file to ‘file_csv’. The data should be in the same directory as this file
Read the data into R and assign it to ‘emissions’
file_csv <- here("_posts","2021-03-01-reading-and-writing-data","co-emissions-per-capita.csv")
emissions <- read_csv(file_csv)
emissions
# A tibble: 22,383 x 4
Entity Code Year `Per capita CO2 emissions`
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# ... with 22,373 more rows
tidy_emissions <- emissions %>% clean_names()
tidy_emissions
# A tibble: 22,383 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# ... with 22,373 more rows
Name | Piped data |
Number of rows | 221 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
entity | 0 | 1.00 | 4 | 32 | 0 | 221 | 0 |
code | 13 | 0.94 | 3 | 8 | 0 | 208 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
year | 0 | 1 | 2018.00 | 0.00 | 2018.00 | 2018.00 | 2018.00 | 2018.00 | 2018.00 | ▁▁▇▁▁ |
per_capita_co2_emissions | 0 | 1 | 5.05 | 5.79 | 0.03 | 1.09 | 3.51 | 6.65 | 39.27 | ▇▂▁▁▁ |
# A tibble: 13 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Africa <NA> 2018 1.13
2 Asia <NA> 2018 4.37
3 Asia (excl. China & India) <NA> 2018 4.14
4 EU-27 <NA> 2018 6.87
5 EU-28 <NA> 2018 6.71
6 Europe <NA> 2018 7.50
7 Europe (excl. EU-27) <NA> 2018 8.39
8 Europe (excl. EU-28) <NA> 2018 9.16
9 International transport <NA> 2018 4.62
10 North America <NA> 2018 11.4
11 North America (excl. USA) <NA> 2018 4.75
12 Oceania <NA> 2018 11.4
13 South America <NA> 2018 2.59
max_15_emitters <- emissions_2018 %>%
slice_max(per_capita_co2_emissions, n=15)
min_15_emitters <- emissions_2018 %>%
slice_min(per_capita_co2_emissions, n= 15)
max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
max_min_15 %>% write_csv("max_min_15.csv")
max_min_15 %>% write_tsv("max_min_15.tsv")
max_min_15 %>% write_delim("max_min_15.psv", delim = "|")
max_min_15_csv <- read_csv("max_min_15.csv")
max_min_15_tsv <- read_tsv("max_min_15.tsv")
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|")
setdiff(max_min_15_csv,max_min_15_tsv,max_min_15_psv)
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
# per_capita_co2_emissions <dbl>
Are there any differences?
max_min_15_plot_data <- max_min_15 %>%
mutate(country = reorder(country, per_capita_co2_emissions))
ggplot(data = max_min_15_plot_data,
mapping = aes(x=per_capita_co2_emissions,y= country)) +
geom_col() +
labs(title = "The top 15 and bottom 15 per capita CO2 emissions",
subtitle = "for 2018",
x= NULL,
y= NULL)
ggsave(filename = "preview.png",
path = here("_posts", "2021-03-01-reading-and-writing-data"))
preview: preview.png