Reading and writing data

A short description of the post.

  1. Load the R packages we will use
library(tidyverse)
library(here)
library(janitor)
library(skimr)
  1. Download C02 emissions per capita from Our World in Data into the directory for this post.

  2. Assign the location of the file to ‘file_csv’. The data should be in the same directory as this file

Read the data into R and assign it to ‘emissions’

file_csv <- here("_posts","2021-03-01-reading-and-writing-data","co-emissions-per-capita.csv")
emissions <- read_csv(file_csv)
  1. Show the first 10 rows (observations of) ‘emissions’
    emissions
    
# A tibble: 22,383 x 4
   Entity      Code   Year `Per capita CO2 emissions`
   <chr>       <chr> <dbl>                      <dbl>
 1 Afghanistan AFG    1949                    0.00191
 2 Afghanistan AFG    1950                    0.0109 
 3 Afghanistan AFG    1951                    0.0117 
 4 Afghanistan AFG    1952                    0.0115 
 5 Afghanistan AFG    1953                    0.0132 
 6 Afghanistan AFG    1954                    0.0130 
 7 Afghanistan AFG    1955                    0.0186 
 8 Afghanistan AFG    1956                    0.0218 
 9 Afghanistan AFG    1957                    0.0343 
10 Afghanistan AFG    1958                    0.0380 
# ... with 22,373 more rows
  1. Start with ‘emissions’ data Then
tidy_emissions
# A tibble: 22,383 x 4
   entity      code   year per_capita_co2_emissions
   <chr>       <chr> <dbl>                    <dbl>
 1 Afghanistan AFG    1949                  0.00191
 2 Afghanistan AFG    1950                  0.0109 
 3 Afghanistan AFG    1951                  0.0117 
 4 Afghanistan AFG    1952                  0.0115 
 5 Afghanistan AFG    1953                  0.0132 
 6 Afghanistan AFG    1954                  0.0130 
 7 Afghanistan AFG    1955                  0.0186 
 8 Afghanistan AFG    1956                  0.0218 
 9 Afghanistan AFG    1957                  0.0343 
10 Afghanistan AFG    1958                  0.0380 
# ... with 22,373 more rows
  1. Start with the ‘tidy_emissions’ THEN
Table 1: Data summary
Name Piped data
Number of rows 221
Number of columns 4
_______________________
Column type frequency:
character 2
numeric 2
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
entity 0 1.00 4 32 0 221 0
code 13 0.94 3 8 0 208 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1 2018.00 0.00 2018.00 2018.00 2018.00 2018.00 2018.00 ▁▁▇▁▁
per_capita_co2_emissions 0 1 5.05 5.79 0.03 1.09 3.51 6.65 39.27 ▇▂▁▁▁
  1. 13 observations have a missing code. How are these observations different?
# A tibble: 13 x 4
   entity                     code   year per_capita_co2_emissions
   <chr>                      <chr> <dbl>                    <dbl>
 1 Africa                     <NA>   2018                     1.13
 2 Asia                       <NA>   2018                     4.37
 3 Asia (excl. China & India) <NA>   2018                     4.14
 4 EU-27                      <NA>   2018                     6.87
 5 EU-28                      <NA>   2018                     6.71
 6 Europe                     <NA>   2018                     7.50
 7 Europe (excl. EU-27)       <NA>   2018                     8.39
 8 Europe (excl. EU-28)       <NA>   2018                     9.16
 9 International transport    <NA>   2018                     4.62
10 North America              <NA>   2018                    11.4 
11 North America (excl. USA)  <NA>   2018                     4.75
12 Oceania                    <NA>   2018                    11.4 
13 South America              <NA>   2018                     2.59
Entities that are not countries do not have country codes. 8. Start with tidy_emissions THEN - Use ‘filter’ to extract rows with year == 2018 and without missing codes THEN - use ‘select’ to drop the ‘year’ variable THEN - use ‘rename’ to change the variable ‘entity’ to ‘country’ - assign the output to ‘emissions_2018’
emissions_2018 <- tidy_emissions %>% 
  filter(year == 2018, !is.na(code)) %>% 
  select(-year) %>% 
  rename(country = entity)
  1. Which 15 countries have the highest ‘per_capita_co2_emissions’?
  1. Which 15 countries have the lowest ‘per_capita_co2_emissions’?
  1. Use ‘bind_rows’ to bind together the ‘max_15_emitters’ and ‘min_15_emitters’
  1. Export max_min_15 to 3 file formats
max_min_15 %>% write_csv("max_min_15.csv")
max_min_15 %>% write_tsv("max_min_15.tsv")
max_min_15 %>% write_delim("max_min_15.psv", delim = "|")
  1. Read the 3 file formats into R
max_min_15_csv <- read_csv("max_min_15.csv")
max_min_15_tsv <- read_tsv("max_min_15.tsv")
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|")
  1. Use ‘setdiff’ to check for any differences among ‘max_min_15_csv’
    setdiff(max_min_15_csv,max_min_15_tsv,max_min_15_psv)
    
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
#   per_capita_co2_emissions <dbl>

Are there any differences?

  1. Reorder ‘country’ in ‘max_min_15’ for plotting and assign to max_min_15_plot_data
  1. Plot ‘max_min_15_plot_data’
    ggplot(data = max_min_15_plot_data,
       mapping = aes(x=per_capita_co2_emissions,y= country)) +
    geom_col() + 
    labs(title = "The top 15 and bottom 15 per capita CO2 emissions",
     subtitle = "for 2018",
     x= NULL,
     y= NULL)
    
  1. Save the plot directory with this post
    ggsave(filename = "preview.png",
       path = here("_posts", "2021-03-01-reading-and-writing-data"))
    
  1. Add preview.png to yaml chuck at the top of this file
preview: preview.png

Footnotes